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Abstract. In earlier calculations of exciton transport in exciton–phonon systems diffusivity
in general has been achieved by means of semi-phenomenological elements. The present
investigation aims at giving anab initio derivation of the diffusion function, involving only
intrinsic characteristics of the model. Using a projection operator technique we have studied
a one-dimensional molecular crystal model with site-diagonal coupling to a phonon bath of
acoustic type. The relevant memory kernels in the transport equations have been evaluated in
a consistent perturbative treatment up to second order in the exciton–phonon interaction for
two different kinds of local excitation. The evolution of the second moment of the exciton
probability density helps us to discuss coherent(M2 ∼ t2) and diffusive(M2 ∼ t) transport.
The time dependence of these memory functions displays an oscillatory short-time decay in
the case of a broad exciton band, which results in diffusive transport. In the high-temperature
limit the diffusion constant is found to decrease with increasing temperature with the power law
D ∼ 1/T . In the opposite case of a small excitonic band the decay remains incomplete and the
time dependence of the second moment is governed by thet2-law typical of coherent transport
processes. Since this is a rigorous second-order result, the vanishing of the second-order term
may serve as a check for any non-perturbative calculation of the diffusion constant in this case.

1. Introduction

A great number of quite different approaches to the dynamics of excitons with a linear
coupling to a phonon bath have been discussed in the literature. The variety of theoretical
concepts includes for example stochastic Liouville equations [13], (generalized) master
equations [9, 8, 16], adiabatic approximations [6, 7] and Fulton–Gouterman techniques
[14]. We also want to mention a very interesting contribution of Grover and Silbey [5]
which describes the motion of excitons, dressed by a phonon cloud, in a renormalized band
being scattered by fluctuations in the phonon bath. Since the non-diagonal scattering term
is proportional to the exciton transferJ this kind of description seems suitable for narrow-
band systems. In this case the velocities in the exciton systems are small and the lattice
distortion follows the exciton motion.

The physical situation in systems with a large exciton bandwidth is quite contrasting. An
initially created ‘hot’ exciton localized at a single site, for example, spreads out immediately.
Since the phonon velocities are small, it is not possible for the lattice to follow this rapid
motion and transport is rather like that of a bare (undressed) exciton. Even in systems
with smaller bandwidth one could argue that, considering an acoustic phonon branch, the
small-wavelength phonons with vanishing group velocity might not follow the excitonic
motion. To investigate this in a systematicab initio manner we employ Mori’s formalism.
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This allows us to discuss the exciton diffusion by means of a continued-fraction method
together with a perturbative calculation of the respective denominator.

The generalized master equation method is especially closely related to our Mori
approach yielding an identical general expression for the memory kernels. Unfortunately
most of these calculations then proceed by introducing a semi-phenomenological
exponential damping factor∼e−αt in the memory functions simulating the coupling to the
thermodynamic bath. This results in the exact (coherent) short-time behaviour and predicts
diffusive transport on a long time-scale. On the other hand it clearly fails as regards relating
the diffusion constant to the physical parameters of the systems such as coupling strength,
bandwidths of the subsystems and temperature. Another critical aspect from the theoretical
point of view is the destruction of time-reversal symmetry due to this damping.

In this paper we calculate the leading term of the memory function up to the second
power of the coupling constant (∼V 2) for two entirely different initial conditions. In the next
section we first describe a molecular crystal model in detail to introduce our notation and
present a derivation of the Mori equation. Section 3 gives the description of the transport
problem yielding a general relation between the second moment of the exciton probability
density and the memory function (see equation (25)). In section 4 we calculate the memory
functions of a system with a localized exciton created at timet = 0 at siten = 0 and
the phonon system in the thermal equilibrium pertaining tot = 0− [17]. In section 5 the
memory function of a thermally excited system [18] is evaluated. The resulting expressions
for the frequency-dependent memory functions and the static susceptibility have been studied
numerically, and a Fourier back-transform yields the time-dependent memories, the time
evolution of the second moment and the diffusion constant. Section 6 deals with systems
where the exciton bandwidth is larger than the phonon bandwidth; in section 7 the opposite
case has been studied. In section 8 we summarize our results and give a short outlook for
further applications of the formalism.

2. The model Hamiltonian and Mori formalism

The system considered in this paper is a one-dimensional molecular exciton–phonon system
with Hamiltonian

H = Hex
0 + H

ph

0 + HI =
∑

k

εkc
†
kck +

∑
q

�qb
†
qbq +

∑
k,q

Vqc
†
k+qck(bq + b

†
−q) (1)

where the dispersion of the excitonic and phononic energies are given by

εk = −2J cosk (2)

�q = �D| sin(q/2)| �2
D = 4f/M. (3)

The first two parts describe an excitonic system with nearest-neighbour transfer integral
−J , which yields the usual cosine dispersion in the Bloch representation, and the acoustic
harmonic phonon system (molecular massM, spring constantf ). The coupling function is
given by [15]

Vq = 2iV sinq√
2(N + 1)�q

(4)

and refers to a diagonal (in excitonic coordinates) linear (in phonon displacement
coordinates) coupling (coupling constantV ) in the Wannier representation. The operators
ck (c

†
k), bq (b

†
q) denote exciton and phonon annihilation (creation) operators respectively

and obey the usual commutation rules. In equation (1) we have neglected the constant
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zero-point energy of the phonons and throughout we use units in which ¯h = kB = 1. At
this stage we define the three dimensionless parameters of the system:

α := �D

4J
(5)

γ := β 4J = 4J

T
(6)

δ := V 2

(4J )3
(7)

which correspond to the ratio of bandwidths, the inverse temperature and the coupling
strength respectively.

The description of the excitonic transport amounts to the calculation of the time-
dependent occupation probabilities at sitesn:

wn(t) = Tr{ρ(0)c†
n(t)cn(t)} (8)

where ρ(0) denotes the density matrix of the system at timet = 0 and cn (c
†
n) is the

annihilation (creation) operator of an exciton in the Wannier representation. In this paper
we study two different kinds of local excitation. The first one is often used in the literature
[17, 8] and describes an exciton created at siten = 0 with a phonon system which is still
in thermal equilibrium (without any exciton). In this case the density matrix reads

ρ(0) = ρphc
†
0c0 (9)

where the phonon part is given by:

ρph = e−βH
ph

0

Tr{e−βH
ph

0 }
. (10)

In a second approach we want to study the time evolution of a local thermal excitation in
the excitonic system. In this case the density matrix is close to thermal equilibrium and is
given by

ρ(0) = e−βH+κc
†
0c0

Tr{e−βH+κc
†
0c0}

. (11)

The operatorκc
†
0c0 can be regarded as a small thermal excitation [18] which results in a

local enhancement of the excitonic probabilities around siten = 0. We note that equation
(11) yields an expression for the transport coefficient which is equivalent with the Kubo
formula.

In both treatments of the problem we are able to express the occupation probabilities as
correlation functions between local observables:

wn(t) = 80n(t) = (A0(0) · An(t)) (12)

where bothAi and the definition of the scalar product (· ) depend on the specific excitation
as will be shown in the next section. The time evolution is governed by the Liouville (super-
) operatorAi(t) = eiLtAi(0) with LAi = [H, Ai ]. Defining the Laplace transformsAi(z)

of these functions in the standard manner, the evolution of an operatorAi(z) = R(z)Ai is
governed by the resolvent

R(z) = 1

z − iL. (13)
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The operator form of the Mori equation is given by [1, 12](
zP − iPLP + PL 1

z − iQLQLP

)
R(z)P = P (14)

where P and Q = 1 − P are the projection operators onto the set of local variables
{Am}, m = 0, ±1, . . . ,±N/2, and the anti-projector respectively, defined as

P . . . =
∑
m,n

Am(Am · An)
−1(An · . . .) (15)

and display the hermiticity and idempotence propertiesP = P † = P 2, Q = Q† = Q2.
Due to the translational invariance of our model all quantities depend on|m − n| only.
Introducing Fourier-transformed operators:

AK = 1√
N + 1

∑
n

Ane−iKn (16)

the projection operator inK-space reads

PK . . . =
∑
K

AK(AK · AK)−1(AK · . . .) (17)

and the projection of the Mori equation (14) onto the set of transformed operators (16)
yields

8K(z) = χK

z − iωKχ−1
K + MK(z)χ−1

K

(18)

where

8K(z) = (AK · R(z)AK) (19)

χK = (AK · AK) (20)

ωK = (AK · LAK) (21)

MK(z) =
(

AK · LQK

1

z − iQKLQKLAK

)
(22)

denote the evolution functions8K(z), the static susceptibilitiesχK , the frequenciesωK and
the memory functionsMK(z) respectively.

3. Excitonic transport

In the previous section we have presented Mori’s formalism for evaluating correlation
functions which determine the local time-dependent exciton occupation numbers. The main
aim of the present paper is to discuss (energy) transport due to exciton motion. For this
purpose we define the normalized moments of the excitonic probability density

Mµ(t) =
∑
m

mµwm(t)

/∑
m

wm(t) (23)

which may be written as (using equation (16))

Mµ(t) = (i)µ lim
K→0

{
(∂µ/∂Kµ)wK(t)

wK(t)

}
. (24)

We are not interested in the peculiar structure of the excitonic distribution but rather in
the mean spread of energy due to the excitonic motion. This requires a discussion of the
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second moment only, which can be related to the behaviour of the memory function for
small K-values as shown in appendix A:

M2(z) − M2(t = 0) = 1

z2
lim
K→0

(∂2/∂K2)MK(z)

χK

. (25)

A perturbative calculation of these memory functions yields

MK(z) =
(

L0AK · 1

z − iLL0AK

)
+ O(K4, V 4). (26)

Inspecting equation (26) we notice that this is a correlation function between the operators
{L0AK}. Defining a projection operator

P̃K . . . = L0AK(L0AK · L0AK)−1(L0AK · . . .) (27)

we can use the Mori equation (14) once again to express the memory function (26) in terms
of a static susceptibilitỹχK and a second-order memory or self-energy function6K(z):

MK(z) = χ̃K

z + 6K(z)χ̃−1
K

+ O(K4, V 4) (28)

with

χ̃K = (L0AK · L0AK) (29)

6K(z) =
(

L0AK · LQ̃K

1

z − iQ̃KLQ̃KLL0AK

)
. (30)

In equation (28) we have already used the fact that the frequency matrixω̃K = (L0AK ·
LL0AK) vanishes again due to time-reversal symmetry. The static susceptibilityχ̃K turns
out to be of orderK2 for small K-values:

lim
K→0

χ̃K = c2K
2 (31)

as does the self-energy function6K(z):

lim
K→0

6K(z) = S(z)K2 + O(K4, V 4). (32)

Inserting equations (31), (32) into equation (28) yields

MK(z) = c2K
2

z + S(z)c−1
2

+ O(K4, V 4). (33)

On defining the diffusion function as the first time derivative of the second moment:

D(t) = d

dt
M2(t) (34)

and considering also the second time derivative

Ḋ(t) = d

dt
D(t) = d2

dt2
M2(t) (35)

equation (33) together with equation (25) yields

D(z) = 1

z

2c2/c0

z + S(z)c−1
2

(36)

Ḋ(z) = 2c2/c0

z + S(z)c−1
2

(37)
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with

c0 = lim
K→0

χK. (38)

Equations (36) and (37) will form the basis of our discussion of the excitonic transport. On
writing

Ḋ(E) = −iḊ(z = −iE) = ḋ ′(ω) + iḋ ′′(ω) E = ω + iε (39)

the inverse Laplace transform of equation (37) is given by

Ḋ(t) = − 1

π

∫ ∞

−∞
dω ḋ ′′(ω)e−iωt (40)

where the spectruṁd ′′(ω) may by inserting equation (37) be written as

ḋ ′′(ω) = 2c2

c0

[ε − s ′′(ω)c−1
2 ]

[ω − s ′(ω)c−1
2 ]2 + [ε − s ′′(ω)c−1

2 ]2
. (41)

s ′(ω) ands ′′(ω) are the real and imaginary parts of the self-energy function−iS(z = −iE)

(compare (39)) and obey the Kramers–Kronig relation

s ′(ω) = 1

π
P

∫ ∞

−∞
dω′ s ′′(ω′)

ω′ − ω
. (42)

The long-time behaviour of the various functions can be discussed studying the low-
frequency behaviour of the (symmetric) functionσ ′′(ω), or, to be more precise,

lim
ω→0

s ′′(ω) ∼ ω0 ⇒ lim
ω→0

ḋ(ω) ∼ ω0 ⇒ lim
t→∞ Ḋ(t) = 0 ⇒ lim

t→∞ D(t) = D

lim
ω→0

s ′′(ω) ∼ ω2 ⇒ lim
ω→0

ḋ(ω) ∼ ω0 + δ(ω) ⇒ lim
t→∞ Ḋ(t) = D̃ ⇒ lim

t→∞ D(t) = D̃t
(43)

which means that transport will be diffusive ifσ ′′(0) = constant, whereas in the case of
a vanishing zero-frequency value the diffusion function increases linearly with the time,
which results in at2-law for the second moment typical for coherent transport processes.

4. Fast single-site excitation (FSSE)

In this section we present the explicit calculation of the memory function for the initial
condition given by equation (9). The time-dependent occupation probabilities are written
as [17]

wm(t) = (A0|Am(t)) (44)

where

Ai = c
†
i ci (45)

and the scalar product between two operators now is specified to be( · ) ≡ ( | )

(A|B) = Tr(ρphA
†B) (46)

where Tr(· · ·) means the product trace over all phonon states combined with the single-
exciton states, andρph is given by equation (10). We want to note that for this definition
of the scalar product the Liouville operator does not display the hermiticity property

(A|LB) 6= (LA|B) (47)
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since the interaction partLI does not commute with the phonon density matrix. On inserting
equation (16) into the definition of the scalar product, the static susceptibilityχK is given
by

χK = (AK |AK) = 1

N + 1

∑
kk′

Tr{ρphc
†
kck+Kc

†
k′+Kck′ } = 1 (48)

and the memory function inK-space reads (see equation (22))

MK(z) = (AK |LQK [1/(z − iQKL)]QKLAK) = (AK |LQK [1/(z − iLQK)]QKLAK)

(49)

with

AK = 1√
N + 1

∑
n

c†
ncne−iKn = 1√

N + 1

∑
k

c
†
k+Kck. (50)

The last equality in equation (49), with the reversed order of the Liouvillian and the anti-
projector in the denominator, is due to the idempotency property of the projection operators.
In a first step we remove the anti-projectorsQK in equation (49). For this purpose we use
the algebraic identity

RQK
(z) = QK

1

z − iLQK

= QK

1

z − iL(1 − PK)
= QKR(z) − iRQK

(z)LPKR(z) (51)

which, on inserting into equation (49), yields for the memory function

MK(z) = (AK |LQKR(z)LAK)

1 + i(AK |R(z)LAK)
. (52)

The remaining anti-projector in the numerator of equation (52) can also be removed, because
for an arbitrary operatorB we have the property that

(AK |LQKB) = (AK |LB) − (AK |LPKB) = (AK |LB) − (AK |LAK)︸ ︷︷ ︸
=0

(AK |AK)−1(AK |B).

(53)

Employing

LAK = L0AK = 1√
N + 1

∑
k

(εk+K − εk)c
†
k+Kck (54)

as well as the hermiticity of the unperturbed LiouvillianL0 with respect to the scalar product

(A|L0B) = (L0A|B) (55)

the memory function is written as

MK(z) = (L0AK |R(z)L0AK)

1 + i(AK |R(z)L0AK)
+ (AK |LIR(z)L0AK)

1 + i(AK |R(z)L0AK)
. (56)

So far our treatment has been exact, without any approximations. Now we use perturbation
theory and draw attention to the behaviour of the memory function for smallK-values, or,
being more precise, we want to extract the leading term∝K2. In appendix B it is shown that
the second part of equation (56) does not contribute in this order, and from equation (54)
we deduce that

lim
K→0

L0AK = 1√
N + 1

∑
k

vkc
†
kckK (57)
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where thevk represent the group velocities in the excitonic system:

vk = dεk

dk
= 2J sink. (58)

This means that the numerator in equation (56) is of orderK2 and

MK(z) = (L0AK |[1/(z − iL)]L0AK) + O(K4, V 4). (59)

This is the result given in equation (26). We are thus able to use the Mori formalism once
again with the projection operator̃PK defined in equation (27). The static susceptibility
(29) is easily calculated, using equation (54), and the definition of the scalar product (46):

lim
K→0

χ̃K = 1

N + 1

∑
k

v2
kK

2 = 2J 2K2 (60)

which determinesc2 as defined in equation (31). The self-energy function6K(z) is given
by (cf. (30)):

6K(z) = (L0AK |LRQ̃K
(z)LL0AK)

= (L2
0AK |RQ̃K

(z)L2
0AK) + (L2

0AK |RQ̃K
(z)LIL0AK)

+ (L0AK |LIRQ̃K
(z)L2

0AK) + (L0AK |LIRQ̃K
(z)LIL0AK) (61)

with

RQ̃K
(z) = Q̃K

1

z − iLQ̃K

. (62)

The first three terms in equation (61) are of fourth or higher order inK which means that

6K(z) = (L0AK |LIRQ̃K
(z)LIL0AK) + O(K4, V 4). (63)

Note that both interactionsLI are on the right-hand side of the scalar product which is in
contrast to a similar formula given in [17]. Since equation (63) is of orderV 2 due to the
two interaction operatorsLI we are able to replace the full LiouvillianL in the resolvent
by the unperturbedL0. On the other hand this allows us to remove the anti-projectors
Q̃K = 1 − P̃K since

P̃KLν
0LIL0AK = L0AKχ̃−1

K (L0AK |Lν
0LIAK) ∼ Tr{ρph(bq + b

†
−q)} = 0 (64)

and we finally arrive at

6K(z) = (L0AK |LI [1/(z − iL0)]LIL0AK) + O(K4, V 4). (65)

The evaluation of the commutators in equation (65) is straightforward and yields for the
function S(z), defined in equation (32),

S(z) = 1

N + 1

∑
k,q

|Vq |2(vk − vk+q)

{
nqvk − (nq + 1)vk+q

z − i(εk+q − εk − �q)
+ (nq + 1)vk − nqvk+q

z − i(εk+q − εk + �q)

}
(66)

with the Bose occupation

nq = 1/(eβ�q − 1). (67)

The imaginary part (see equation (39)) is given as a sum overδ-functions

s ′′(ω) = 1

N + 1

∑
k,q

|Vq |2(vk − vk+q){(nqvk − (nq + 1)vk+q)δ[ω + (εk+q − εk − �q)]

+ ((nq + 1)vk − nqvk+q)δ[ω + (εk+q − εk + �q)]} (68)
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and the evaluation of equation (68) can be performed by the procedure presented in appendix
B, yielding

s ′′(ω) = V 2

α
{s+(ω) + s−(ω)} (69)

with

s±(ω) = − 1

π

∫
q∈[0,π ]
|u±

q |<1

dq sin2(q) coth

{
1

2
γα sin

(
q

2

)} √
1 − (u±

q )2 (70)

and the abbreviations

u±
q = ω ± �D|sinq/2|

4J sinq/2
. (71)

The remainingq-integration has to be performed numerically, and the real part of the
self-energy function is calculated using a principal-value integration.

5. Thermal site excitation (TSE)

The evaluation of the site occupation probabilities for an initial condition of type (11)
requires more effort. In contrast to the previous section here we have to make the additional
assumption that the operatorκc

†
0c0 in the exponent is ‘small’, i.e. that the system is

close to thermal equilibrium. In this case in a previous paper [18] it has been shown
that a Goldberger–Adams expansion of the density matrix yields in a linearized theory
the following expression for the deviation of the expectation values from the stationary
equilibrium value:

An(t) = 〈c†
n(t)cn(t)〉T − 〈c†

ncn〉T = κ(A0(0); An(t)) (72)

where ( · ) ≡ ( ; ) denotes the Mori product which has been exploited in the original
papers [11, 19]

(A; B) = 1

β

∫ β

0
dλ 〈A†(0)B(iλ)〉T (73)

and the thermal expectation values are defined in the conventional manner:

〈A〉T = Tr {ρT A} ρT = e−βH

Tr(e−βH )
(74)

and the Liouville operator now displays hermiticity:

(A; LB) = (LA; B). (75)

Note that with the definition of the normalized second moment (equation (23)) the factorκ

cancels out, and the constantc0, as defined in (38) is given by

c0 = 1

N + 1

∑
kk′

〈c†
kckc

†
k′ck′ 〉T = 1

N + 1

∑
k

〈Nk〉T = 1

N + 1
(76)

since the total exciton number equals one. The memory function is given as

MK(z) = (LAK; QK [1/(z − iLQK)]QKLAK) (77)

where we have used equation (75). Again the anti-projectors can be removed by the same
procedure as in the previous section (see equations (51) and (53)), yielding

MK(z) = (L0AK; [1/(z − iL)]L0AK) + O(K4). (78)
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As pointed out by Forster [2] equation (78) together with equation (25) ‘is nothing but a
funny way of writing down the Kubo formula [10]’. Using the projection operator formalism
once again, the static susceptibility is given by

χ̃K = (L0AK; L0AK) = (L0AK; LAK) (79)

which, on employing equation (57), relates the constantc2 to the thermal occupation numbers

c2 = 1

N + 1

∑
k

v2
k 〈Nk〉T 〈Nk〉T = 〈c†

kck〉T . (80)

The evaluation of the thermal expectation values up to second order in the coupling
using the Goldberger–Adams expansion of the density matrix with respect to the interaction
HamiltonianHI is presented in appendix C.

Figure 1. FSSE: here we show the time dependence of theK2-term of the memory function
((1/4J 2) limK→0(∂

2/∂K2)MK(τ), τ = 4J t) for three different temperaturesγ = 4J/T (0.5,
1.0, 2.0), bandwidth parameterα = �D/(4J ) = 0.5 and couplingδ = D2/(4Jf ) = 0.01. The
decay of the memories is complete and is faster with increasing temperature.

We can use the same arguments as in the case of a FSSE yielding equation (65) from
equation (61), but with the difference that now the complete Liouvillian, and not onlyL0,
displays hermiticity to arrive at the following expression for the self-energy function:

6K(z) = (LIL0AK |[1/(z − iL0)]LIL0AK) + O(K4, V 4). (81)

We use the dissipation-fluctuation theorem [1] corresponding to definition (73):

σ ′′
K(ω) = −π

sinh(βω/2)

βω/2
exp(βω/2)JK(ω) (82)
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Figure 2. (a) FSSE: the diffusion functionD(τ) resulting from the memories of figure 1. The
solid line refers to coherent propagation without coupling to a bath (D(t) = 4J 2t = Jτ ).
(b) FSSE: the time evolution of the second moment resulting from the memories and diffusion
functions of figures 1 and 2(a). For short times we observe coherent propagation (∼2J 2t2) and
for long times diffusive transport (∼Dt).
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which relates the imaginary partσ ′′
K(ω) (compare equation (39)) to the spectral function

JK(ω) = 1

2π

∫ ∞

−∞
dt 〈LIL0AKLIL0AK(t)〉T eiωt (83)

which is defined as the Fourier transform of the real-time correlation function. Neglecting
terms of order higher thanV 2 allows us to perform the thermal expectation values in (83)
with H0. Comparing the result with equation (32) we get

s ′′(ω) = −π
sinh(βω/2)

βω/2
exp(βω/2) {f1(ω) + f2(ω)} (84)

with

f1(ω) = 1

N + 1

∑
k,q

|Vq |2(nq + 1)(vk − vk+q)
2 e−βεk

Z0
δ[ω − (εk+q − εk − �q)] (85)

f2(ω) = 1

N + 1

∑
k,q

|Vq |2nq(vk − vk+q)
2 e−βεk

Z0
δ[ω − (εk+q − εk + �q)]. (86)

The factors e−βεk /Z0 are due to the excitonic expectation values

〈c†
kck〉(0)

T = e−βεk

Z0
Z0 =

∑
k

e−βεk (87)

of a single particle in thermal equilibrium. Performing thek-sum we obtain

s ′′(ω) = 1

Z0

V 2

α

sinh(βω/2)

βω/2
{s+(ω) + s−(ω)} (88)

with

s±(ω) = − 1

π

∫
q∈[0,π ]
|u±

q |<1

dq sin2 q

[
cosh

(
1

2
γ cos

q

2

√
1 − (u±

q )2

)/
sinh

(
1

2
αγ sin

q

2

)]

×
√

1 − (u±
q )2 (89)

and abbreviationsu±
q defined in (71).

6. Broad excitonic bandwidths(α < 1)

In this section we want to present the numerical results for a large exciton bandwidth.
Figure 1 displays the time evolution of the memory function for different temperatures
γ = 4J/T in the case where the exciton bandwidth exceeds the phonon bandwidth by a
factor 2 (α = 0.5) and a coupling constantδ = 0.01. The excitation type is that of a
FSSE (section 5). A sharp oscillatory decay is seen with the ‘decay rate’ increasing with
increasing temperature.

Figure 2(a) displays the diffusion function resulting from the memories of figure 1, and
in figure 2(b) the time evolution of the second moment is depicted on a double-logarithmic
scale. In both pictures the solid line represents the coherent motion without coupling to
the bath. It is observed that for small times the motion of the excitons is determined by
this limit, but within some typical coherence timeτC the diffusion function saturates at
a constant value (the diffusion constant). This results in a linear time dependence of the
second moment, which can be seen in figure 2(b). Inspecting figure 2, we notice that
both the coherence time and the diffusion constant decrease with increasing temperature (γ

smaller). Since coherent motion refers to a constant, non-decaying memory, this corresponds
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to the increasing decay rate of the memories with increasing temperature (see figure 1). The
physical reason for this behaviour is the increase of the scattering probabilities for excitons
due to the Bose occupation of the phonon states (compare equation (67)).

We do not present the corresponding pictures for a TSE since they show a similar
behaviour. Indeed, they are completely identical in the high-temperature region. For low
temperatures the qualitative behaviour remains the same, i.e. complete decay, but memories
of a TSE display an even faster decay than those of a FSSE. Possible reasons will be
discussed at the end of this section.

Figure 3. FSSE: the temperature-dependent diffusion constant. For low temperatures the diff-
usion constant saturates to a constant value and for high temperatures it becomes∼1/T . Band-
width parameter:α = 0.3 (solid line);α = 0.5 (dashed line); andα = 0.7 (dotted line).

In figure 3 we have drawn the temperature-dependent diffusion constant for a FSSE
(section 4). The bandwidth parameters have been chosen asα = 0.3 (solid line),α = 0.5
(dashed line) andα = 0.7 (dotted line). The finite value of the diffusion constant
for T → 0 is due to the characteristics of the one-dimensional acoustic mode density
(ρ(ω = 0) = constant). We observe a relatively sharp transition between an almost constant
value at low temperatures (T̃ 6 10−1) to a decay∼1/T at higher temperatures (T̃ > 10−1).

Figure 4 compares the diffusion constant resulting from a FSSE with that of a TSE.
The two approaches are completely identical in the high-temperature region whereas for low
temperatures the ‘thermal’ diffusion constant turns out to be smaller. There are two possible
reasons for this strange behaviour. First, we are not able to calculate the static susceptibility
χ̃ exactly, which was possible in the case of a FSSE. Since the contribution of the higher-
order terms in the Goldberger–Adams expansion of the density matrix is increasing with
decreasing temperature, the results for low temperatures have to be studied more carefully.
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Figure 4. The temperature-dependent diffusion constant for a FSSE (solid line) and a TSE
(dashed line). Bandwidth parameter:α = 0.5.

Second, there exists an intrinsic temperature dependence in the concept of a TSE. It has been
shown [4] that for high temperatures a TSE results in a deviation of the local occupation
numbers which is strongly localized at the single site of the excitation, comparable with
the situation for a FSSE. With decreasing temperature, the excitation becomes broader and
broader which means that the influence of large-wavelength exciton modes with vanishing
group velocity is increasing. This could also be the reason for the different results at low
temperatures.

7. Small excitonic bandwidths (α > 1)

In the previous section the connection between a (complete) decay of the memory and
the transition to diffusive transport has been established for systems with broad exciton
bands. Figure 5 displays the time evolution of the memories in the case of a small
excitonic bandwidth (α = �D/(4J ) = 2.0). A completely different qualitative behaviour,
i.e. incomplete decay, is observed. Physically this is due to the specific model, since
there exists no scattering process in second order fulfilling both the energy and momentum
conservation laws (εk+q − εk ± �q 6= 0).

Figure 6 shows the time dependence of the diffusion function resulting from the
memories depicted in figure 5. The solid line represents the coherent limit which equals
the short-time behaviour of the other curves. Contrary to the case of a broad exciton band,
the non-decaying part of the memory results in a diffusion function increasing linearly with
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Figure 5. FSSE: theK2-term of the memory function ((1/4J 2) limK→0(∂
2/∂K2)MK(τ), τ =

4J t) for three different temperatures (γ = 0.5, 1.0, 2.0) in the case of a small exciton band
(α = �D/(4J ) = 2.0, δ = 0.1). In contrast to figure 1, the decay here is incomplete with a
finite asymptotic value depending on the temperature.

time (∼t) also in the long-time regime. The pre-factor is somewhat reduced compared with
the uncoupled situation due to exciton renormalization which means partial ‘dressing’ of
the excitons with a phonon cloud. It is observed that increasing the temperature (γ smaller)
is tantamount to a smaller value of the non-decaying memory, i.e. a smaller increase of the
diffusion function. Again this is due to the Bose occupation of the phonon states.

All of the pictures correspond to a system with a FSSE. As far as the TSE is concerned,
we refer to the remarks of the previous section.

8. Results and discussion

We have calculated the time evolution of the second moment of the exciton probability
density for a one-dimensional molecular crystal model with a linear coupling to acoustic
phonons. Using Mori formalism and assuming a small exciton–phonon coupling, the
frequency-dependent second-order memory function has been evaluated up to second order
in the coupling constant (∼V 2). Due to the symmetry of these functions the resulting time
dependency of both the memory function and the second moment are fully time-reversal
symmetric.

In our results the characteristics of the dispersion relations of the two uncoupled
subsystems are crucial. The memory functions, for example, turn out to decay in the
case of a broad exciton band, whereas for a small exciton bandwidth this decay remains
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Figure 6. FSSE: the time evolution of the diffusion function for the memory functions of figure
5. The solid line displays the coherent limit without coupling to the bath. The diffusion function
is proportional to the first power of the time. For long times the pre-factor is somewhat reduced
due to renormalization effects.

incomplete and a finite constant value of the memory exists.
In the case of a broad exciton band the decay results in a diffusive transport with the

second moment of the exciton probability density being proportional to the first power oft

for long times. The diffusion constant falls off proportionally to 1/T for high temperatures
whereas the behaviour for low temperatures depends on the specific choice of the excitation.
In the case of a FSSE (compare section 4) the diffusion constant reaches a constant value
as T → 0, whereas for a TSE the diffusion constant tends to zero. We ascribe this
second behaviour to the intrinsic temperature dependence of the TSE approach, i.e. the
increasing width of the initial exciton occupation probability with decreasing temperature.
The monotonic decrease in the high-temperature regime for both types of excitation is due
to our choice of a diagonal coupling only. An inclusion of phonon-induced exciton transfer
between different sites would yield a second transport mechanism with a quite different
temperature dependence.

Since a constant memory refers to coherent motion, we are, on the other hand, not able
to find diffusive transport in systems with narrow exciton bands. To achieve diffusivity
either anharmonic terms in the phonon system or nonlinear exciton–phonon coupling would
be necessary. In real systems the coupling to acoustic phonons is most important in the
low-temperature regime when the scattering with optical phonons becomes ineffective due
to the Bose occupation. For this situation we deduce that the coherence-destroying process
has to be of fourth order at least. This means that for small values of the exciton–phonon
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coupling and a small exciton bandwidth transport will remain coherent for very long times
as far as the exciton–phonon coupling is concerned. On the other hand this means that the
transport process is almost completely controlled by disorder effects. The inclusion of these
effects within the presented formalism seems possible and will be given elsewhere.

Another generalization of our results would be the extension to higher-dimensional
systems. This procedure is straightforward and requires only an increasing amount of
numerical effort. Our future work will be concerned with the inclusion of transitive
(non-diagonal) coupling and also with the non-perturbative approaches based on unitary
transformations or mode-coupling theories for example. Since our result is exact in a
perturbative sense, it is well suited for checking results, which are received in a non-
perturbative manner.

Appendix A

The normalized second moment is given by (see equation (23))

M2(t) = − lim
K→0

{
(∂2/∂K2)wK(t)

wK(t)

}
(A1)

wherewK(t) are the Fourier-transformed occupation probabilities

wK(t) = 1√
N + 1

∑
m

wm(t)e−iKm. (A2)

Using the Mori equation (18) the Laplace transform of equation (A2) may be written as

wK(z) = 1√
N + 1

χK

z + MK(z)χ−1
K

. (A3)

Due to the inversion symmetry of the model Hamiltonian the series expansion in powers of
K of all Fourier-transformed functions contains only even powers inK and we deduce that

lim
K→0

χK ∝ K0 (A4)

lim
K→0

MK(z) ∝ K2. (A5)

Inserting equations (A4) and (A5) into equation (A2) we are able to write

wK(z) = 1√
N + 1

χK

z

(
1

1 + MK(z)/(zχK)

)
= 1√

N + 1

χK

z

(
1 − MK(z)

zχK

+ O(K4)

)
(A6)

and thus

M2(z) = − lim
K→0

{
1

z

(∂2/∂K2)χK

χK

− 1

z2

(∂2/∂K2)MK(z)

χK

}
. (A7)

The first term in equation (A7) representsM2(t = 0) whereas the second one determines
the time evolution (see equation (25)), which is what we wanted to prove.

Appendix B

The second part of the memory function in equation (56) is given by

M(2)
K (z) = (AK |LIR(z)L0AK)

1 + i(AK |R(z)L0AK)
(B1)
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with

R(z) = 1

z − i(L0 + LI )
= R0(z) + R0(z)iLIR0(z) + O(L2

I ) (B2)

and the unperturbed resolvent

R0(z) = 1

z − iL0
. (B3)

Inserting equation (B2) into the numerator of equation (B1) we obtain

M(2)
K (z) = (AK |LIR0(z)L0AK) + (AK |LIR0(z)iLIR0(z)L0AK)

1 + i(AK |R(z)L0AK)
. (B4)

The first term in equation (B4) vanishes due to the single-boson creation and annihilation
operators inLI :

(AK |LIR0(z)L0AK) = 0 (B5)

and in the second term we use the series expansion of the resolvent

R0(z) = 1

z

∞∑
ν=0

(
iL0

z

)ν

(B6)

to arrive at

M(2)
K (z) =

(
AK

∣∣∣∣LIR0(z)iLI

∞∑
ν=1

(
iL0

z

)ν

AK

)/
1 + i(AK |R(z)L0AK). (B7)

We do not have to calculate the fullK-dependence of equation (B7) but to extract the
leading term of orderK2. Using

lim
K→0

Lν
0AK ∝ Kν (B8)

we notice that we have to keep only the first two terms in the sum of equation (B7):

M(2)
K (z) = (i/z)(AK |LIR0(z)LIL0AK) − (1/z2)(AK |LIR0(z)LIL2

0AK)

1 + i(AK |R(z)L0AK)
. (B9)

The first part of (B9) is proportional toK and has to be equal to zero due to inversion
symmetry (which can also be proved by a direct evaluation) and the second one is of order
K2 which allows us to write (expanding the denominator for smallK-values)

M(2)
K (z) = − lim

K→0

1

z2
(AK |LIR0(z)LIL2

0AK) + O(K4)

= − K2

z2

1

N + 1

∑
k,q

|Vq |2(v2
k − v2

k+q)

×
{

1

z − i(εk+q − εk + �q)
− 1

z − i(εk+q − εk − �q)

}
. (B10)

Calculating (B10) along the imaginary axis

− iM(2)
K (z = −iE) = m′

K(ω) + im′′
K(ω) (B11)

we obtain for the imaginary part

m′′
K(ω) = K2

ω2

1

N + 1

∑
k,q

|Vq |2(v2
k − v2

k+q)

× {δ[ω + (εk+q − εk + �q)] − δ[ω + (εk+q − εk − �q)]}. (B12)
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Now we present the general scheme for how to evaluate a sum of type (B12), which
determines also the non-vanishing parts of the memory function. First we introduce the
abbreviations

u∓
q = ω ∓ �q

4J |sin(q/2)| (B13)

to write theδ-functions of equation (B12) as

δ[ω ∓ �q + εk+q − εk] = 1

4J |sin(q/2)|δ[u∓
q + sin(k + q/2)] (B14)

where we have used that

εk+q − εk = −2J [cos(k + q) − cos(k)] = 4J sin(q/2) sin(k + q/2) (B15)

and the property of theδ-function

δ(ax) = 1

|a|δ(x). (B16)

Inserting equation (B14) as well as the coupling constantVq given by equation (4) into
equation (B12) yields

m′′
K(ω) = K2

ω2

V 2

α

π

N + 1

∑
q

2 cos2(q/2)
1

N + 1

∑
k

(v2
k − v2

k+q)

× {δ[u+
q + sin(k + q/2)] + δ[u−

q + sin(k + q/2)]} (B17)

where the parameterα is defined in section 1 (see equations (5), (7)). Now we direct our
attention to thek-sum in (B17). Introducing the new variablek′ = k + q/2 we may write

1

N + 1

π∑
k=−π

(v2
k − v2

k+q){δ[u+
q + sin(k + q/2)] + δ[u−

q + sin(k + q/2)]}

= 1

N + 1

π+q/2∑
k′=−π+q/2

(v2
k′−q/2 − v2

k′+q/2){δ[u+
q + sin(k′)] + δ[u−

q + sin(k′)]}

(B18)

which on inserting

v2
k′−q/2 − v2

k′+q/2 = (4J )2 sin(q/2) cos(q/2) sin(k′) cos(k′) (B19)

yields
π+q/2∑

k′=−π+q/2

(v2
k′−q/2 − v2

k′+q/2){δ[u+
q + sin(k′)] + δ[u−

q + sin(k′)]}

= (4J )2 sin(q/2) cos(q/2)

π+q/2∑
k′=−π+q/2

sin(k′) cos(k′)

× {δ[u+
q + sin(k′)] + δ[u−

q + sin(k′)]}. (B20)

Since the function in (B20) is 2π -periodic ink′ and we sum over a whole period, we
may also write

π+q/2∑
k′=−π+q/2

· · · =
3π/2∑

k′=−π/2

· · · =
π/2∑

k′=−π/2

· · · +
3π/2∑

k′=π/2

· · · . (B21)

Substituting in the second sumk′′ = k − π and finallyk′ = −k′′ we obtain

m′′
K(ω) = 0 ⇒ m′

K(ω) = 0 (B22)

since the second sum is just the negative of the first one.
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Appendix C

Using the Goldberger–Adams expansion [3] of the density matrix (11) with respect to the
interaction Hamiltonian

eβ(H0+HI ) = eβH0

{
1 −

∫ β

0
dλ eλH0HI e−λH

}
(C1)

we obtain to second order for the thermal expectation value for an operatorA

〈A〉T =
{
〈A〉(0)

T −
∫ β

0
dλ 〈HI(−iλ)A〉(0)

T +
∫ β

0
dλ

∫ λ

0
dλ′ 〈HI(−iλ)HI (−iλ′)A〉(0)

T

}
Z0

Z

(C2)

with

Z0

Z
= 1 −

∫ β

0
dλ 〈HI(−iλ)〉(0)

T +
∫ β

0
dλ

∫ λ

0
dλ′ 〈HI(−iλ)HI (−iλ′)〉(0)

T (C3)

and

HI(−iλ) = eλH0HI e−λH0. (C4)

As pointed out in section 4 we need the thermal occupations

〈Nk〉T = 〈c†
kck〉T (C5)

to evaluate the static susceptibilitỹχK . The interaction Hamiltonian at the complex time
t = −iλ is given by

HI(−iλ) =
∑
k′,q

Vqc
†
k′+qck′ {bqeλ(εk+q−εk−�q) + b

†
−qeλ(εk+q−εk+�q)}. (C6)

Inspecting equation (C6) and (C3), (C4) we notice that the first-order terms are equal to
zero:

〈HI(−iλ)〉(0)
T = 0 (C7)

〈HI(−iλ)A〉(0)
T = 0 (C8)

and equation (C4) together with equation (C3) yields

〈Nk〉T = 〈Nk〉(0)
T +

∫ β

0
dλ

∫ λ

0
dλ′ 〈HI(−iλ)HI (−iλ′)Nk〉(0)

T

− 〈HI(−iλ)HI (−iλ′)〉(0)
T 〈Nk〉(0)

T . (C9)

Inserting (C6) into (C9) we are able to perform theλ-, λ′-integrations and we arrive at

1Nk

〈Nk〉(0)
T

= 〈Nk〉T − 〈Nk〉(0)
T

〈Nk〉(0)
T

=
∑
k′,q

|Vq |2(nq + 1)A−(k′, q){δk′,k−q − 〈Nk′+q〉(0)
T }

+
∑
k′,q

|Vq |2nqA
+(k′, q){δk′,k−q − 〈Nk′+q〉(0)

T } (C10)

with the abbreviations

A±(k′, q) = eβ1±(k′,q) − 1 − β1±(k′, q)

1±(k′, q)2
(C11)

1±(k′, q) = εk′+q − εk′ ± �q. (C12)
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The remaining two sums may be converted into integrals:

1

N + 1

π∑
k(q)=−π

· · · ⇒
∫ π

−π

dk (dq) · · · (C13)

which allows us to perform a numerical calculation of〈Nk〉T and thus ofc2 given by
equation (80).
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